PENGELOMPOKAN STATUS GIZI BALITA DENGAN DATA LANGSUNG DAN DATA TIDAK LANGSUNG
Abstract
The nutritional status of children under five reflects the level of development and welfare of the community in a country and is related to the health status of children in the future. The recording of nutritional status is usually carried out every month by officers by recording nutritional status directly using the anthropometric method, namely recording the weight and age of toddlers on the KMS (Card Towards Health). In this study, to determine the nutritional status of toddlers using direct data, namely anthropometric data consisting of age, weight and gender data, while for indirect data using a questionnaire with 30 respondents who will then get the results of the nutritional status of toddlers. The results of this study using direct and indirect data processing showed 3 clusters where poor nutrition was 16.67%, normal nutrition was 43.33% and over nutrition was 40%. So there is still a fairly high value in excess nutrition.
Downloads
References
[2] A. Kabeta, D. Belagavi, and Y. Gizachew, “Factors Associated With Nutritional Status of Under-Five Children in Yirgalem Town, Southern Ethiopia,” IOSR J. Nurs. Heal. Sci., vol. 06, no. 02, pp. 78–84, 2017, doi: 10.9790/1959-0602057884.
[3] A. Aprilia, W. M. Rahmawati, and M. Hakimah, “Penentuan Kategori Status Gizi Balita Menggunakan Penggabungan Metode Klasterisasi Agglomerative Dan K-Means,” Semin. Nas. Sains dan Teknol. Terap. VII 2019, Inst. Teknol. Adhi Tama Surabaya, pp. 595–600, 2019.
[4] E. Irfiani and S. S. Rani, “Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita,” J. Sist. dan Teknol. Inf., vol. 6, no. 4, p. 161, 2018, doi: 10.26418/justin.v6i4.29024.
[5] Khasanah dan Sulistyawati, “Karakteristik Ibu denganJurnal, S., Kesehatan, I., Khasanah, N. A., Sulistyawati, W., Tinggi, S., & Majapahit, I. K. (2018). Karakteristik Ibu dengan Kejadian Gizi Kurang pada Balita 6-24 Bulan di Kecamatan Selat , Kapuas Tahun 2016. 7(1), 1–8. Kejadian G,” J. Str. Kesehat. lmiah, vol. 7, no. 1, pp. 1–8, 2018.
[6] Dona, Rifqi, and Nurhabibah, “PENERAPAN METODE K-MEANS CLUSTERING DALAM PENGELOMPOKAN STATUS KESEHATAN IBU HAMIL Penerapan Metode K-Means Clustering dalam Pengelompokan Status Kesehatan Ibu Hamil RJoCS,” Riau J. Comput. Sci., vol. 06, no. 02, pp. 160–174, 2020.
[7] D. R. Putri and E. Sudarmilah, “Monitoring Status Gizi Balita Secara Online ( Monitoring of Toddler Nutrition Status Online ),” J. Inform., vol. 8, no. 1, pp. 101–110, 2020.
[8] R. Rosmini, A. Fadlil, and S. Sunardi, “Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah,” It J. Res. Dev., vol. 3, no. 1, pp. 22–31, 2018, doi: 10.25299/itjrd.2018.vol3(1).1773.
[9] Almatsier, Prinsip Dasar Ilmu GIzi. Jakarta: PT. Gramedia Pustaka Utama, 2005.
[10] D. Arini, A. C. Mayasari, and M. Z. A. Rustam, “Gangguan Perkembangan Motorik Dan Kognitif pada Anak Toodler yang Mengalami Stunting di Wilayah Pesisir Surabaya,” J. Heal. Sci. Prev., vol. 3, no. 2, pp. 122–128, 2019, doi: 10.29080/jhsp.v3i2.231.
[11] P. M. Silitonga Irene Sri, “Klusterisasi Pola Penyebaran Penyakit Pasien Berdasarkan Usia Pasien Dengan Menggunakan K-Means Clustering,” J. TIMES, vol. VI, no. Vol 6, No 2 (2017), pp. 22–25, 2017, [Online]. Available: http://ejournal.stmik-time.ac.id/index.php/jurnalTIMES/article/view/584.
[12] E. Prasetyo, Data Mining Konsep Dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi, 2013.
[13] M. G. Pradana, A. C. Nurcahyo, and P. H. Saputro, “Penerapan Metode K-Means Klustering Untuk Menentukan Kepuasan Pelanggan,” Creat. Inf. Technol. J., vol. 7, no. 1, p. 42, 2021, doi: 10.24076/citec.2020v7i1.185.
[14] P. Sari, B. Pramono, and L. ode H. S. Sagala, “Improve K-Means Terhadap Status Nilai Gizi Pada Balita,” semanTIK, vol. 3, no. 1, pp. 143–148, 2017, doi: 10.1063/1.2957900.
[15] F. A. Syam, “Implementasi Metode Klastering K-Means untuk Mengelompokan Hasil Evaluasi Mahasiswa,” J. Ilmu Komput. dan Bisnis, vol. 8, no. 1, pp. 1857–1864, 2017, doi: 10.47927/jikb.v8i1.94.