IMPLEMENTASI ALGORITMA NAÏVE BAYES UNTUK MEMPREDIKSI PENGARUH MEDIA SOSIAL TERHADAP SEMANGAT BELAJAR MAHASISWA DI MASA PANDEMI COVID 19

  • Fiqih Satria Universitas Islam Negeri Raden Intan Lampung
  • Hermanto . Universitas Islam Negeri Raden Intan Lampung
Keywords: Online Learning, Naive Bayes Algorithm, Social Media, Passion for Learning

Abstract

The rapid development of information technology in the digital era has made it easier for people to access the internet. People are increasingly familiar with social media such as Facebook, Instagram, WhatsApp and other social media applications. Social media can provide benefits if used correctly and can have a negative impact if used incorrectly. The COVID-19 pandemic has had a major impact, especially in the world of education. To break the chain of spread of Covid-19, Raden Intan Lampung State Islamic University (UIN) carried out online learning either through E-Learning, Zoom, Google Meet, Whatsapp, Youtube and other social media that can support the learning process for students. In the online learning process, the level of enthusiasm for learning and students' understanding of the subject is very important to study in order to produce quality students from quality materials and learning media used. The method in this study uses the Naïve Bayes algorithm. Based on the results of testing the Naïve Bayes algorithm, the accuracy rate is 72% and the precision class is 77.8%, the recall class is 68.3%, and the AUC value is 0.768 so that the resulting model is quite good. From the results obtained, the Naïve Bayes algorithm can be used as a method in making decisions about the effect of using social media on student enthusiasm for learning during online learning during the Covid 19 pandemic.

Downloads

Download data is not yet available.

References

[1] Pakpahan, R., & Fitriani, Y. (2020). Analisa pemanfaatan Teknologi Informasi Dalam pembelajaran Jarak jauh di tengan Pandemi Virus Corona Covid-19. 4.

[2] Baiq Andriska Candra P (2018). Prediksi Kepuasan Mahasiswa Terhadap Tingkat Pelayanan Menggunakan Algoritma C4.5 (Decision Tree) (Studi Kasus: Fakultas Teknik Universitas Hamzanwadi). Jurnal Informatika dan Teknologi Vol. 1 No. 1, Januari 2018, hal 32 – 39.

[3] Larose,Daniel T,2006.Data Mining Meyhods and Models.John Willey & Sons,Inc.New Jersey.

[4] Rezki, M., Kholifah, D. N., Faisal, M., Priyono, P., & Suryadithia, R. (2020). Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting Menggunakan Algoritma Naïve Bayes. Jurnal Infortech, 2(2), 264–270. https://doi.org/10.31294/infortech.v2i2.9286Dhany, H. W., & Izhari, F. (2019).

[5] ANALISIS ALGORITHMS SUPPORT VECTOR MACHINE DENGAN NAIVE BAYES KERNEL PADA KLASIFIKASI DATA. Jurnal Teknik Dan Informatika, 6(2), 30–35.

[6] Wulandari, F., Jusia, P. A., & Jasmir, J. (2020). Klasifikasi Data Mining Untuk Mendiagnosa Penyakit ISPA Menggunakan Metode Naïve Bayes Pada Puskesmas Jambi Selatan. Jurnal Manajemen Teknologi Dan Sistem Informasi (JMS), 2(3), 214–227.

[7] Hastuti, K. (2012). Analisis Komparasi Algoritma Klasifikasi Data Mining untuk Prediksi Mahasiswa Non Aktif. Seminar Nasional Teknologi Informasi & Komunikasi Terapan 2012, 14(1), 241–249
Published
2022-04-04
How to Cite
[1]
F. Satria and H. ., “IMPLEMENTASI ALGORITMA NAÏVE BAYES UNTUK MEMPREDIKSI PENGARUH MEDIA SOSIAL TERHADAP SEMANGAT BELAJAR MAHASISWA DI MASA PANDEMI COVID 19”, Jurnal Informasi dan Komputer, vol. 10, no. 1, pp. 50-56, Apr. 2022.