Klasifikasi Penyakit Powdery Mildew Pada Ceri manis Manis Dengan Algoritma Convolutional Neural Network
Abstract
Sweet cherry are a fruit that has a high value as a commodity, besides that sweet cherry have various health benefits, so the potential of this fruit is very large. In the cultivation of sweet cherry, there are often problems that interfere with the cultivation of sweet cherry. Powdery mildew is one of the diseases that commonly infects sweet cherry where this disease infects the leaves and triggers premature aging of sweet cherry. Improper handling of infected sweet cherry plants can spread powdery mildew to other sweet cherry trees which can reduce sweet cherry yields. To help treat sweet cherry leaves, the classification system can be a solution that can be used to find powdery mildew that infects sweet cherry plants. The purpose of this study is to create a model that can classify sweet cherry leaves that have been infected with powdery mildew on their leaves, the model works by comparing the sweet cherry leaves in the dataset with the sweet cherry leaves to be examined. From this research the results conducted using CNN get good results where the model gets an accuracy of 99.9%, validation accuracy is 100% and testing accuracy is 100%.
Downloads
References
[2] Moparthi S, Bradshaw M. Fungicide efficacy trials for the control of powdery mildew (Podosphaera cerasi) on sweet cherry trees (Prunus avium). Biocontrol Sci Technol. 2020;30(7):659–70.
[3] Arifin AZ, Darwanto R, Navastara DA, Ciptaningtyas HT. Klasifikasi online dokumen berita dengan menggunakan algoritma Suffix Tree Clustering. In: Seminar Sistem Informasi Indonesia (SESINDO2008). 2008.
[4] Ghaffarian S, Valente J, Van Der Voort M, Tekinerdogan B. Effect of attention mechanism in deep learning-based remote sensing image processing: A systematic literature review. Remote Sens. 2021;13(15):2965.
[5] Maulana FF, Rochmawati N. Klasifikasi citra buah menggunakan Convolutional Neural Network. J Informatics Comput Sci. 2019;1(02).
[6] Rasywir E, Sinaga R, Pratama Y. Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN). J Parad UBSI. 2020;22(2):117–23.
[7] Dzaky ATR, Al Maki WF. Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network. eProceedings Eng. 2021;8(2).
[8] Paliwang AAA, Septian MRD, Cahyanti M, Swedia ER. Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network. Sebatik. 2020;24(2):207–12.
[9] Rozaqi AJ, Sunyoto A, rudyanto Arief M. Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network. Creat Inf Technol J. 2021;8(1):22–31.
[10] Mayatopani H, Borman RI, Atmojo WT, Arisantoso A. CLASSIFICATION OF VEHICLE TYPES USING BACKPROPAGATION NEURAL NETWORKS WITH METRIC AND ECENTRICITY PARAMETERS. J Ris Inform. 2021;4(1):65–70.
[11] Fadlia N, Kosasih R. Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). J Ilm Teknol dan Rekayasa. 2020;24(3):207–15.