Analisis Sentimen Program Migrasi TV Digital Menggunakan Algoritma Naive Bayes dengan Chi Square

  • Virgaria Zuliana Universitas Singaperbangsa Karawang
  • Garno Garno Universitas Singaperbangsa Karawang
  • Iqbal Maulana Universitas Singaperbangsa Karawang

Abstract

Currently, television occupies the number 2 position as a source of information after social media. The analog TV broadcast system will be replaced with digital TV based on a plan issued by the Ministry of Communication and Information in Indonesia. Social media is useful for sharing thoughts and opinions about events, products and more, for example on the ongoing digital TV migration. The advantages of digital TV include superior technology and clear, crisp picture clarity. Some people argue that they are satisfied with the transition to digital TV, while others are the opposite. So that researchers are interested in these two opinions and are interested in analyzing public sentiment regarding the migration program for digital TV broadcasts on Twitter social media because of these two responses. The Naive Bayes method with Chi Square feature selection is used in the research process to examine differences in public opinion about migration to digital TV broadcasts. The results of the classification with 191 positive sentiment data and 185 negative sentiment data resulted in 96% accuracy, 93% precision and 100% recall.

Downloads

Download data is not yet available.

References

[1]. Annur CM. Survei KIC: Mayoritas Masyarakat Indonesia Mengakses Informasi di Media Sosial [Internet]. databoks.katadata.co.id. 2022 [cited 2022 May 25]. Available from: https://databoks.katadata.co.id/datapubl sh/2022/01/20/survei-kic-mayoritas-masyarakat-indonesia-mengakses-informasi-di-media-sosial
[2]. Andarini FA. Analisis Strategi Digitalisasi Media di Era Digital PT. Media Nusantara Citra Tbk (MNCN). J Ilm Indones. 2022 Feb;7(2).
[3]. Mahardhika YS, Zuliarso E. Analisis Sentimen Terhadap Pemerintahan Joko Widodo pada Media Sosial Twitter Menggunakan Algoritma Naive Bayes Classifier. Sintak. 2018;2.
[4]. Rahutomo F, Saputra PY, Fidyawan MA. Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine. J Inform Polinema. 2018;4(2):93–100.
[5]. Pattiiha FS, Hendry. Perbandingan Metode K-NN, Naïve Bayes, Decision Tree untuk Analisis Sentimen Tweet Twitter Terkait Opini Terhadap PT PAL Indonesia. J Ris Komput. 2022;9(2):2407–389.
[6]. Kisworini RY, Setiawan MA. Peningkatan Performa Naivee Bayes Dengan Seleksi Atribut Menggunakan Chi Square Untuk Klasifikasi Loyalitas Pelanggan GRAB. J Informatics, Inf Syst Softw Eng Appl. 2020;2(2):69–075.
[7]. Hozairi, Anwari, Alim S. Implementasi Orange Data Mining untuk Klasifikasi Kelulusan Mahasiswa dengan Model K-Nearest Neighbor, Decision Tree serta Naive Bayes. J Ilm NERO. 2021;6(2):133–44.
[8]. Ratmana DO, Fajar Shidik G, Fanani AZ, Muljono, Pramunendar RA. Evaluation of Feature Selections on Movie Reviews Sentiment. 2020 Int Semin Appl Technol Inf Commun. 2020;567–71.
[9]. Mulaab. Data Mining Konsep dan Aplikasi. Malang: Media Nusa Creative; 2017.
[10]. Nofriansyah D. Konsep Data Mining vs Sistem Pendukung Keputusan. Yogyakarta: Deepublish; 2014.
Published
2022-10-05
How to Cite
[1]
V. Zuliana, G. Garno, and I. Maulana, “Analisis Sentimen Program Migrasi TV Digital Menggunakan Algoritma Naive Bayes dengan Chi Square”, Jurnal Informasi dan Komputer, vol. 10, no. 2, pp. 90-95, Oct. 2022.