KLASIFIKASI JENIS KUCING MENGGUNAKKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS DAN K-NEAREST NEIGHBOR

  • Aisyah Nur Ramadhayani Universitas Stikubank Semarang
  • Veronica Lusiana Universitas Stikubank Semarang

Abstract

Cats in Latin is Felis silvestris catus is a kind of carnivorous animal. Cats are the most popular pets in the world that have many enthusiasts and fans. Cats that have bloodlines are officially registered as purebred cats or pure breeds. The number of cat breeds like this is only slightly, only 1% of the world's cat population, which is usually only bred in official animal husbandry.

This study uses the Principal Component Analysis (PCA) and K-nearest Neighbor (KNN) algorithms with the aim of classifying cat images through the analysis stage on original images, binary images and grayscale images.The output of the feature extraction will be the input for the Principal Component Analysis (PCA) and K-nearest Neighbor (KNN) algorithms for cat species classification applications.

The feature extraction that will be used in this research are RGB and HSV. The data that will be used in this study are 34 image data, consisting of 24 training data images and 10 test image data.So with this research, it is hoped that it can help people to more easily find out the classification of pets, namely cats. The output accuracy in the classification application uses the Multi Support Vector Machine (SVM) Algorithm with first-order feature extraction from the Principal Component Analysis (PCA) and K-nearest Neighbor (KNN) algorithms, which reaches an accuracy rate of 80%.

Downloads

Download data is not yet available.

References

[1] Gonzales, Rafael C, Ricahrd E. Woods & Steven L. ‘Eddins, “Digital Image Processing Using MATLAB”, Prentice-Hall (2004).

[2] Ahmad, Rizal. Pengolahan Citra Digital.https://achmadrizal.staff.telkomuniversity.ac.id/pengolahan-citra/, diakses Juni (2014).
[3] Tita Rahayu, “Identifikasi dan Prevalensi Ektoparasit Pada Kucing Kampung di Pasar Batu dan Arhanud Sebagai Sumber Belajar Biologi”, Universitas Muhammadiyah Malang (2015).

[4]Adiwijaya, U. N. Wisesty, E. Lisnawati, A. Aditsania dan D. S. Kusumo, “Dimensionality Reduction using Principal Component Analysis for Cancer Detection based on Microarray Data Classification,” Jurnal of Computer Science, vol. 14 (11), pp. 1521-1530, (2018).

[5] A. Jamala, A. Handayania, A. A. Septiandria, E. Ripmiatina dan Y. Effendi, “Dimensionality Reduction using PCA and K-Means Clustering for Breast Cancer Prediction,” Lontar Komputer, vol. 9 (3), pp. 192-201, (2018).

[6] Muhammad Ridwan Effendi, “Sistem Deteksi Wajah Jenis Kucing Dengan Image Clasification Menggunakkan OpenCV”,(2018).

[7]. Elok Faiqotul H, Maura W, Maysaroh, “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB dan HSV Menggunakkan Metode K-Means Clustering”,Vol 6, No.2 November (2020).

[8]. Atikah Khairiyah H,” Klasifikasi Jenis Buah Jambu Berdasarkan Metode Principal Component Analysis (PCA)”,(2020).

[9]. Ratri Enggar P, WaliJa'far S, Wahyuni,” Klasifikasi Kualitas Jeruk Lokal Berdasarkan Tekstur dan Bentuk Menggunakkan Metode k-Nearest (k-NN)”,(2020).

[10]. Moh Arie Hasan, Dewi Yanti Liliana, “Pengenalan Motif Songket Palembang Menggunakkan Deteksi Tepi Canny, PCA dan KNN”, (2020).

[11]. Muhammad Afif A.F,Kurniawan N.R, Febryanti S" Klasifikasi Ras pada Kucing Menggunakkan Algoritma Convolutional Neural Network(CNN)”, Vol.8 No.1 Februari (2021).

[12]. Hafizhah DN dan Hamdan SR, “Hubungan Pet Attachment dengan Psychological Well Being pada Pemelihara Kucing”, Vol.7 No.73-76 Januari (2021).
Published
2022-10-20
How to Cite
[1]
A. Ramadhayani and V. Lusiana, “KLASIFIKASI JENIS KUCING MENGGUNAKKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS DAN K-NEAREST NEIGHBOR”, Jurnal Informasi dan Komputer, vol. 10, no. 2, pp. 257-263, Oct. 2022.